前言
本章主要讲述的是对于hadoop生态系统中,MapReduce写的ChainMapper的学习。MapReduce是hadoop集群数据处理的默认框架。而对于数据集中所有的数据必然有一些不友好的数据,我们需要将其丢弃。我们称之为数据的预处理。所以我们需要将预处理模块与数据处理逻辑分开,以便以后可以复用数据预处理模块。以下是一个mapper的通用模式:
- 丢弃无用的已损坏的数据
- 处理有效数据,提取感兴趣的字段
- 针对这些字段,输出我们感兴趣的数据
准备工作
数据集:ufo-60000条记录,这个数据集有一系列包含下列字段的UFO目击事件记录组成,每条记录的字段都是以tab键分割,文件名为ufo.tsv,这里就不提供下载连接了
- sighting date:UFO目击事件发生时间
- Recorded date:报告目击事件的时间
- Location:目击事件发生的地点
- Shape:UFO形状
- Duration:目击事件持续时间
- Dexcription:目击事件的大致描述
例子:
19950915 19950915 Redmond, WA 6 min. Young man w/ 2 co-workers witness tiny, distinctly white round disc drifting slowly toward NE. Flew in dir. 90 deg. to winds.
ChainMapper介绍
全限定名: org.apache.hadoop.mapred.lib.ChainMapper
作用:顺序的执行多个mapper,并且最后一个mapper的输出会传递给reducer。
ChainMapper的使用
题目:通过使用 ChainMapper 类验证数据集的记录是否有效,即判断每条记录是否都可以划分为6个字符串
- 上传ufo.tsv到hadoop
hadoop dfs -put ufo.tsv ufo.tsv
- 编写 UFORecordValidationMapper.java
import java.io.IOException;import org.apache.hadoop.io.*;import org.apache.hadoop.mapred.*;import org.apache.hadoop.mapred.lib.*;public class UFORecordValidationMapper extends MapReduceBase implements Mapper{ public void map(LongWritable key, Text value, OutputCollector output, Reporter reporter) throws IOException { String line = value.toString(); if(validate(line)) { output.collect(key, value); } } private boolean validate(String str) { String[] parts = str.split("\t"); if(parts.length != 6) { return false; } return true; }}
- 编写 UFOLocation.java
import java.io.IOException;import java.util.Iterator;import java.util.regex.*;import org.apache.hadoop.conf.*;import org.apache.hadoop.fs.Path;import org.apache.hadoop.io.*;import org.apache.hadoop.mapred.*;import org.apache.hadoop.mapred.lib.*;public class UFOLocation { public static class MapClass extends MapReduceBase implements Mapper{ private final static LongWritable one = new LongWritable(1); private static Pattern locationPattern = Pattern.compile("[a-zA-Z]{2}[^a-zA-Z]*$"); public void map(LongWritable key, Text value, OutputCollector output, Reporter reporter) throws IOException { String line = value.toString(); String[] fields = line.split("\t"); String location = fields[2].trim(); if(location.length() >= 2) { Matcher matcher = locationPattern.matcher(location); if(matcher.find()) { int start = matcher.start(); String state = location.substring(start, start + 2); output.collect(new Text(state.toUpperCase()), one); } } } } public static void main(String...args) throws Exception { Configuration config = new Configuration(); JobConf conf = new JobConf(config, UFOLocation.class); conf.setJobName("UFOLocation"); conf.setOutputKeyClass(Text.class); conf.setOutputValueClass(LongWritable.class); JobConf mapconf1 = new JobConf(false); ChainMapper.addMapper(conf, UFORecordValidationMapper.class, LongWritable.class, Text.class, LongWritable.class, Text.class, true, mapconf1); JobConf mapconf2 = new JobConf(false); ChainMapper.addMapper(conf, MapClass.class, LongWritable.class, Text.class, Text.class, LongWritable.class, true, mapconf2); conf.setMapperClass(ChainMapper.class); conf.setCombinerClass(LongSumReducer.class); conf.setReducerClass(LongSumReducer.class); FileInputFormat.setInputPaths(conf, args[0]); FileOutputFormat.setOutputPath(conf, new Path(args[1])); JobClient.runJob(conf); }}
- 编译上述两个文件
javac UFORecordValidationMapper.java UFOLocation.java
- 将编译好的文件打包成jar
jar cvf ufo.jar UFO*class
- 提交打包好的jar包到hadoop上运行
hadoop jar ufo.jar UFOLocation ufo.tsv output
- 从hadoop上获取结果到本地
hadoop dfs -get output/part-00000 ufo_result.txt
- 查看结果
more ufo_result.txt